Pinball Loss Minimization for One-bit Compressive Sensing

نویسندگان

  • Xiaolin Huang
  • Lei Shi
  • Ming Yan
  • Johan A. K. Suykens
چکیده

The one-bit quantization can be implemented by one single comparator, which operates at low power and a high rate. Hence one-bit compressive sensing (1bit-CS) becomes very attractive in signal processing. When the measurements are corrupted by noise during signal acquisition and transmission, 1bit-CS is usually modeled as minimizing a loss function with a sparsity constraint. The existing loss functions include the hinge loss and the linear loss. Though 1bit-CS can be regarded as a binary classification problem because a one-bit measurement only provides the sign information, the choice of the hinge loss over the linear loss in binary classification is not true for 1bitCS. Many experiments show that the linear loss performs better than the hinge loss for 1bit-CS. Motivated by this observation, we consider the pinball loss, which provides a bridge between the hinge loss and the linear loss. Using this bridge, two 1bit-CS models and two corresponding algorithms are proposed. Pinball loss iterative hard thresholding improves the performance of the binary iterative hard theresholding proposed in [6] and is suitable for the case when the sparsity of the true signal is given. Elasticnet pinball support vector machine generalizes the passive model proposed in [11] and is suitable for the case when the sparsity of the true signal is not given. A fast dual coordinate ascent algorithm is proposed to solve the elastic-net pinball support vector machine problem, and its convergence is proved. The numerical experiments demonstrate that the pinball loss, as a trade-off between the hinge loss and the linear loss, improves the existing 1bit-CS models with better performances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1-Bit Compressive Sensing: Reformulation and RRSP-Based Recovery Theory

The 1-bit compressive sensing has been studied recently in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit models is not available, the solution to the 1-bit models is no longer unique in general. As a result, the aim of 1-bit compressive sensing is to recover the signal within a positive scalar factor by using some decoding methods. In this paper...

متن کامل

Recovery Guarantee and Reconstruction Algorithms for 1-bit Compressive Sens- Ing

Compressive sensing is an emerging method for signal acquisition in which the number of samples ensuring exact reconstruction of the signal to be acquired is far less than the one in the conventional Nyquist sampling approach. In compressive sensing, the signal is acquired by means of few linear non-adaptive measurements, and then reconstructed by finding the sparsest solution via an l1-minimiz...

متن کامل

Binary Fused Compressive Sensing: 1-Bit Compressive Sensing meets Group Sparsity

We propose a new method, binary fused compressive sensing (BFCS), to recover sparse piece-wise smooth signals from 1-bit compressive measurements. The proposed algorithm is a modification of the previous binary iterative hard thresholding (BIHT) algorithm, where, in addition to the sparsity constraint, the total-variation of the recovered signal is upper constrained. As in BIHT, the data term o...

متن کامل

One-bit compressive sampling via ℓ 0 minimization

The problem of 1-bit compressive sampling is addressed in this paper. We introduce an optimization model for reconstruction of sparse signals from 1-bit measurements. The model targets a solution that has the least 0-norm among all signals satisfying consistency constraints stemming from the 1-bit measurements. An algorithm for solving the model is developed. Convergence analysis of the algorit...

متن کامل

One-Bit Compressive Sensing with Partial Support Information

This work develops novel algorithms for incorporating prior-support information into the field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring high-dimensional signals from few linear measurements. In applications, it is often the case that we have some knowledge of the structure of our signal(s) beforehand, and thus we would like to leverage it to attain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1505.03898  شماره 

صفحات  -

تاریخ انتشار 2015